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Abstract

A computationally efficient analysis is developed to predict the critical buckling loads
of geodesically stiffened composite panels under in-plane loading. The analysis procedure
accounts for the contribution of the in-plane extensional and out-of-plane bending stiffnesses
of the stiffeners through the use of Lagrange multipliers technique in an energy method
solution. The analysis is used to understand the effect of various stiffener deformation modes
on the buckling load and to determine skin deformation patterns of geodesically stiffened
panels under various load combinations.

The analysis routines are then coupled with the numerical optimizer ADS to create a
package for the design of minimum-mass stiffened panels. subject to constraints on buckling
of the panel assembly and material strength failure. Material failure in the skin and
stiffeners is estimated using a maximum strain criterion. The design variables that can be
used for optimization include thickness of the skin laminate, stiffener thickness and height,
and positions of straight stiffeners. Applied loads are uniaxial compression, pure shear, and

combined compression-shear.
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1.0 Introduction

One of the most important considerations in designing aircraft and aerospace vehicles is weight.
By reducing the weight of an aircraft, it is possible to increase the flight range or increase the pay-
load. The structural frame of an aircraft generally represents a large percentage of its weight and,
therefore, it is important to choose the lightest but adequate material and structural configurations
to minimize the frame weight. Imposing additional requirements such as constraints on the dura-

bility and the cost makes the design problem even more challenging.

With the introduction of high performance composite materials and advanced manufacturing
processes over the past few decades, it is possible to use composite materials for light-weight pri-
mary load carrying structures such as the fuselage of an aircraft. Filament winding and tow-
placement techniques now permit manufacturing of cylindrical (Figure 1) and flat (Figure 2 and
Figure 3) components with complex stiffening arrangements in a short enough time to be applied
in various industries cost effectively. Panels that have a grid of stiffeners with a prescribed uniform
pattern, such as the geodesically stiffened panels, are promising structural components since they
permit low cost fabrication through automated manufacturing techniques and have superior re-
sponse characteristics under combined loadings. Moreover, by going to different stiffening ar-

rangements, the response of these panels can be tailored to meet various design requirements.
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INNOVATIVE FABRICATION CONCEPT
Built-up Structure _ Integrated Structure

® Highly labor intensive ® Highly automated fabrication
® Large number of parts ® Integral stiffened cocured design
® Large number of fasteners ® Low cost finished structure

@ High structural assembly costs

Figure 1. Filament wound geodesically stiffened fusclage concept: [After FREEMANI]
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SKIN PANEL
INTEGRALLY STIFFENED

(PULTRUSION)

INTERMEDIATE ./
TR PAR
USS SPa FRONT AND REAR SPAR
(PULTRUSION) :
- FILAMENT WOUND
GEQDESIC STIFFENED

ONE PIECE
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Figure 2. Wing box assembly with geodesically stiffened spar: {After BARRIE, et a/?]
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WOVEN FIBER FORM
(1 AT EACH
INTERSECTION)

STIFFENER WRAP SIDE RAIL
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(1yp)

SECTION A-A

1. InSTALL wOvEN FiBER
FORNS AND STIFFENER
WRAPS 1N MANDREL ~
LOCATE SIDE RAIL.

2. WIND UMIDIRECTIONAL
STIFFENERS AND CAP
REINFORC NG,

3. REmOvE SIDE RAIL.

4, FILAMENT WIND SPAR
ASSY.

FILAMENT WINDING

MANDREL arsep e

TOOLING

STIFFENERS
WOUND INTO
GROOQVES IN

MANDREL

WINCING PATTERN FOR SPARS WOUNO
STIFFENERS IN PAIRS

Figure 3. Geodesically stiffened spar fabrication method: [After BARRIE, et ai?]
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A promising application of geodesically stiffened pancls are the wing rib panels in large transport
aircraft. There- are typically a large number of such components and, therefore, the weight saving
can be substantial. Wing ribs are used to separate the upper and lower skins of the wing
(Figure 4). Due to aerodynamic loads, engine forces, loads due to the fuel stored in the wing, etc.,
the wing is subject to a complicated combination of axial, bending and twisting forces. The bending
of the wing causes axial compressive loading of the rib while the twisting results in shear loading
(Figure 5). Geodesically stiffened panels present some superior properties in compression and

shear, and this is why they are likely to be used in this particular application.

Analysis of stiffened panels with a complex grid pattern can be quite difficult. During the opti-
mization of such panels different computational techniques can be used for the analysis. For ex-
ample, the finite element method coupled with an optimizer (see Ref. 4) is often used for the
purposes of analysis. However, the use of the finite element method can become prohibitively ex-
pensive due to the large number of analyses that are needed for an optimization run. Also using
the positions of the stiffeners as design variables would require expensive remeshing of the structure
(at least one per call to the optimizer), and therefore, can be used only in cases for which the design
cost is not a real constraint. Another alternative is to use analytical techniques, such as the energy

method, coupled with an optimizer.

Application of the energy method to buckling analysis of flat unstiffened panels is commonly used
for geometry and boundary conditions where the buckled shape of the panel can be approximated
by a Fourier series. The values of the coefficients of the scries corresponding to the actual shape
are calculated by minimizing the total potential encrgy. Tn the case of panels stiffened by discrete
plate-like stiffeners, a similar approach can be used. In this case, in addition to the skin defor-
mations, the assumed form of the stiffener deformations can he expressed in Fourier series. The
mode shape and the load at buckling can be determined by minimizing the total potential energy
of the entire system while maintaining certain compatibility conditions between the deformation
of skin and the stiffeners. Such an approach has recently been used in Ref. 5 to determine buckling

loads of grid stiffened panels. In Ref. 5, the stiffeners arc modeled as beams, and only the effect of
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~ Skin

Figure 4. General wing structure diagram: [After SWANSON3]
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Figure 5. Loading on a wing rib
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the bending stiffnesses of the stiffeners in the direction perpendicular to the skin is considered.
Continuity of the skin and the stiffener deformations at selected locations along the length of the

stiffeners are then imposed via the I.agrange Multiplier technique.

The objectives of the present work are twofold. First, an improvement in the analysis procedure
described in Ref. § is sought by assuming the stiffeners to be modeled as plate elements and by in-
cluding the out-of-plane deformation of the stiffeniers as a new degree of freedom. This additional
degree of freedom requires that the continuity of the rotations between the skin and the stiffeners
at the base of the stiffeners be maintained during the analysis procedure. The second objective of
the present work is to expand the design configurations studied earlier by allowing the stiffener lo-
cations to be design variables, such that a more optimal configurations under various loadings can

be obtained.
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2.0 Design Problem Formulation

The purpose of this section is to present the wing rib geometry and to state all the assumptions and

restrictions about the panel.

In section 2.1 the geometry of the ribs is introduced, and the material for the skin and the stiffeners
is specified. In section 2.2 the design variables that will be used for the analysis and the optimiza-
tion are presented. Finally, in section 2.3 a brief introduction of the analysis/optimization tool is

given.

Design Problem Formulation 9



2.1 Geodesically Stiffened Wing Rib Panels

2.1.1 A global view of the panels

The rib is modeled as a rectangular panel 80 inches wide in the wing chord direction and 28 inches

high in the wing thickness direction. The panel incorporates a skin and a grid of stiffeners placed

symmetrically on both sides of the skin.

There are three kinds of stiffening arrangements: a pancl can be longitudinally stiffened, diagonally

stiffened, or cross stiffened (Figure 6). To simplify the description of these stiffening arrangements,

the concept of cells is introduced (Figure 7).

The skin is symmetrically laminated, balanced, and is made of AS4/3502 Graphite-Epoxy with

typical properties given in Table 1.

Table 1.

AS4/3502 Graphite-Epoxy Material Properties

Flastic Properties:

Longitudinal Modulus
Transverse Modulus
In-Plane Shear Modulus
Transverse Shear Modulus
In-Plane Poisson’s Ratio

Strength Properties:

Longitudinal Tensile Strain Allowable
Longitudinal Compressive Strain Allowable
Transverse Tensile Strain Allowable
Transverse Compressive Strain Allowable
Shear Strain Allowable

Physical Properties:

Mass Density

. = 18.5 % 10 1bf/in?
E, = 1.64 x 10¢ 1bf/in?
G, =0.87 x 10° 1bf/in?
Gy = 0.54 x 10° Ibf/in?
Vi2 =030

¢f = 0.0090

g = 0.0080

g5 = 0.0055

g = 0.0290

vz = 0.0250

p =0.057 Ibm/in3

Design Problem Formulation
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The stiffeners are located on both sides of the skin, symmetrical about the midplane of the skin
laminate and are made of unidirectional AS4/3502 Graphite-Epoxy or are symmetrically laminated
and balanced (Figure 8). Oblique stiffeners occur by pairs oriented at equal but opposite angles

with respect to the panel axis.

2.1.2  Assumptions for the panel configuration

In this sub-section, the assumptions used for the panel configuration are explained.

First, both the skin and the grid of stiffeners are set to be symmetric about the midplane of the skin.

In order to justify such a choice, the following facts are recalled:

1. A symmetrically laminated plate does not exhibit bending-extension coupling.

2. Moreover, by placing the stiffeners symmetrically on both sides of the skin, the panel
bending-extension coupling is climinated.

3. A linear prebuckling equilibrium state is more realistic in the absence of bending-extension
coupling.

4. Only out-of-plane displacements participate in the buckling mode if the stiffened panel remains

in-plane during stable equilibrium.

Thus, for a symmetric panel the in-plane and out-of-plane deformations will be uncoupled so that
its buckling can be studied by considering the out-of-plane deflection w only. Moreover, based on
these assumptions the linear theory can be used to determine the internal load distribution in the

skin.

Secondly, the skin layup is balanced and oblique stiffeners occur in pairs oriented at equal but op-
posite angles with respect to the skin axis. This construction avoids the in-plane extension-shear

coupling, which may not be desirable in the case of wing ribs.

Design Problem Formulation 13



Figure 8. The stiffener

Symmetric, balanced laminated Skin

symmetric, balanced laminated Stiffener
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Thirdly, the stiffeners are symmetrically laminated and balanced respectively to avoid bending-

extension coupling (B, = 0) and in-plane extension in-plane shear coupling (A5 = A% = 0).

Fourthly, like in the previous study®, the effect of bending-twisting coupling terms Dig, Dy is ignored
for both the skin and the stiffeners; this simplifies the analysis. [However, it is well known that the
presence of these terms can account for a considerable drop in the buckling load and sensitivity to
the direction of applied shear load. Tor this reason this analysis is used for specially orthotropic

laminates for which Dys = Dy = 0.

Finally, it is assumed that when the panel is loaded by uniform end shortening the spars are rigid

enough to restrain the panel deformation to zero (e, = 0, N,#0).

2.2 Design Variables And Constraints

2.2.1 Design variables

The design variables are the parameters that will be changed to optimize the panel. During this
study, the design variables are taken to be the stiffener height and thickness, the skin thickness, and
the cell distribution. The number of additional variables nceded to define the cell distribution de-
pends on the number of cells and is equal to the number of independent cell widths that are needed
to fully define the symmetric cell distribution (it is the number of degrees of freedom of the cell
distribution). Figure 9 shows the cells for which the width is a design variable. These cells are
shaded in the figure. The following table (Table 2) gives the number of additional variables needed
to take into account the cell distribution dufing the design. For example, a seven cell panel requires

three new design variables.

Design Problem Formulation 15



Figure 9. The cells for which the width is a new desfgn variable
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Table 2. Number of additional design variables

Number of cells Number of new variables
1 0
2 0
3 1
4 1
5 2
6 2
7 3
8 _ 3
9 4
10 4

2.2.2 Constraints.

The constraints that are used for this study include

1. The panel buckling constraint,
2. Material failure constraint,

3. In case of cell-width design variables constraints for linking the design variables.

In the analysis conducted by Phillips’, the buckling of the skin and the buckling of the stiffeners in
their own out-of-plane direction were studied scparately. As will be presented in the next chapter,
one of the major improvements of this study over the one presented in Ref. 5 is the removal of the
separate panel and stiffener buckling analysis used by Phillips. Because equations governing the

buckling of the panel are modified to include the stiffeners as plate elements, the panel buckling

Design Problem Formulation



constraint can include both the skin and stiffener buckling together as an assemblage.

2.3 .Overview Of The Analysis|Optimization

A computerized code can be used for the preliminary design of grid stiffened flat panels. The com-
puter code developed in this work has two main parts: the optimizer and the analysis. The opti-

mizer and analysis are called by the main program in an iterative procedure.

1. The optimizer decides how to change the design variables based on the constraints, the objec-
tive function value, and their derivatives with respect to the design variables.
2. The analysis then uses the design variables to evaluate the new constraints and the new ob-

jective function (e.g., the panel weight).

This procedure, as represented in Figure 10, is repeated until a design is reached for which the ob-

jective function is minimized and all the constraints are satisfied.

As was mentioned in the introduction, the analysis could be done with a finite element code, but
it would be computationally too expensive. Thus, instead of using the Finite Flement Method a

method that involves both the Fnergy Method and the I agrange Multiplier Technique is used.

2.3.1 The optimizer

The optimization code ADS¢ is used as a "black box” to which the analysis subroutine gives the
constraints and objective function values, and from which the modified values of the design vari-

ables are obtained.

Design Problem Formulation 8
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Evaluation of constraints
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Figure 10. The optimization scenario
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ADS is a Fortran optimization program for solution of nonlinear constrained problems. It is de-
signed to be us;ad as a subroutine in a Fortran code. ADS offers many selections for the strategy,
the optimizer, and the one-dimensional search used in optimization. Selection of these options
depends upon the problem to be solved. The ADS manual suggests the following combination of
options for problems with mildly nonlinear objective function and constraints, and problems in
which only a few constraints are active. Based on the previous authors (Ref. 5) experience, the

present problem fits into this description, and the following options are employed:

1. The strategy can be either Sequential Convex Programming or Sequential quadratic program-
ming.

2. The optimizer is the modified method of feasible directions for constrained minimization.

3. The appropriate one-dimensional search is such that the minimum of a constrained function

is found by first finding the bounds and then by using a polynomial interpolation.

2.3.2 The analysis

The energy method is used to find the total potential cnergy of the panel for displacements of the
skin or the stiffeners expressed in terms of Fourier series. Then, with the use of Lagrange multi-
pliers, this energy is minimized subject to the constraints that enforce the compatibility of the skin
and stiffener deformations. As will be shown, a generalized discrete eigenvalue problem is obtained.
The smallest eigenvalue of this problem corresponds to the critical buckling load of the panel, and

its corresponding eigenvector corresponds to the buckling mode shape.

Design Problem Formulation 20



3.0 Analysis Development

The method used to analyze grid stiffened flat panels under in-plane loading is described in this
chapter. In the first section, the assumptions corresponding to this analysis are stated. In section
1.2 the load distribution analysis is established. Then, in the section 3.3 the stability equations of

the panel are derived.

3.1 Fundamental Assumptions For The Analysis

The first assumption of this analysis is that the panel deformations prior to buckling are small
enough to allow the application of the principle of superposition of displacements under the action

of multiple external loads.

Secondly, an appropriate prebuckling equilibrium analysis is employed to estimate the load dis-
tribution in the elements of the wing ribs.. Interaction of the prebuckling deformations of the skin

and the stiffeners are ignored.

Analysis Development 21



Micro-mechanic complications at the stiffener intersection points, stress concentration in the cor-
ners between tﬁe skin and the stiffener and imperfections due to the manufacturing related issues,
such as resin rich and resin starved regions resulting from filament winding, are ignored. Briefly, the
wing rib is composed of perfectly uniform plates connected to each other. The load is assumed to

be uniform in the skin and the stiffeners, and unidirectional in the stiffeners.

Thirdly, it is assumed that the plates arc thin enough to neglect transverse shear effects and to apply

the classical lamination theory for both the skin and the stiffeners.

Finally, the panel is loaded by uniform end shortening and it is assumed that the panel strains are
spatially uniform. Moreover the spars are supposed to be rigid enough to ensure &, = 0 (X is the
long axis of the panel). In the case of shear, the strains ¢, and s, are set to zero and loading is in-

troduced through uniform shear strain y,,.

3.2 Load Distribution Analysis In Prebuckling

This part of the analysis is divided into three steps. Tirst, the panel strain vector is computed. Then,
using the constitutive equations the loads carried by the skin and the stiffening cells are derived.
Finally, using adequate geometry transformations. the longitudinal load in each stiffener is com-

puted.

Since the cell distribution is not uniform and the panel is loaded by uniform end shortening, the
applied load is not uniform along the long edges of the panel. Tor this reason, the panel average
compressive (or shear) stress resultant is defined as the ratio of the total compressive (or shear) load

over the width of the panel.

Analysis Development 22



3.2.1 Pane_l strains

The total applied compressive load P and the shear load .S are distributed among the skin and the

different cells by assuming uniform end shortening of the panel.

For longitudinally stiffened pancls the panel strains are the same independent of the cell distrib-
ution. Therefore, the load distribution for a longitudinally stiffened panel is obtained using the
previous analysis® developed for uniform cell distribution. For diagonally stiffened and cross-

stiffened panels with non-uniform cell distribution some changes have to be made.

3.2.1.1 Skin constitutive equations

The constitutive equations of a general laminate is

NE 45 B .
s} T a5 S { } ' M
M B D X

where {N*} is the vector of in-plane stress resultants, {M<} is the vector of moment resultants, {e}
is the vector of midplane in-plane strains, {«} is the vector of curvatures, and the superscript s
stands for skin (the skin of the stiffened panel). Since the skin laminate is assumed to be symmetric,
there is no coupling between in-plane extension and out-of-plane bending. Therefore, the

constitutive equations cotresponding to the in-plane stress resultants and strains are written as

N Ay AT A £y
{Nf} = |47, A3 M {} : e)
nys A{ﬁ Agﬁ Agﬁ Yxy

Moreover, the skin laminate is assumed to be a balanced laminate. As a result, the constitutive

equations can be simplified further:
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5 5 5
Ny Ai 2 0 Ex

{Nys} = Af2 A§2 0 {ay} . 3
Ng' 0 0 A Yy

3.2.1.2 Stiffening cell constitutive equations

The constitutive equations of a regular grid of stiffening arrangement were derived by Phillips and

Gurdal’. Tor a cross-stiffened panel or a diagonally stiffened panel the constitutive equations of a

stiffening cell are given by

er A(l Alr2 0 Ex
{ /Vy’ } = A£1 A£2 0 { £y } , 4
nyf 0 0 /’26 Yy

where the superscript r stands for stiffening arrangement and the A" terms are given by

24F, | 24F, 4
A{‘=T‘(" Abt—‘"z——(.“
24E 2AF
ALy = ek S )
i I
r 24 E{’ 2
66 = b cs
with
E, : axial elastic modulus of the stiffeners
A : cross sectional area of the stiffeners

I, : cell width
b : panel height
¢ arctan( % )
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c=cos ¢

s=sin ¢

In the case of laminated stiffeners, AF, is replaced by Ay [{7* where A, is the in-plane stiffness

of the laminate along the # axis of the rib (Figure 1), and [7® is the stiffener height.

These constitutive equations change from one cell to another and will only be used to compute the
load carried by a single stiffening cell. The in-plane force resultants for the skin and the cells are

presented in Figure 12.

The load carried by the stiffening cell (see Figure 13) is given by

Ie = Ngub
= Nl
T h r (6)
['xy = wa'l,
F,rv; = N)rcyib

3.2.1.3 Global strains

First, only the compressive load P is considered. This load is carried by the stiffening cells and the

skin. Since ¢, = 0, the constitutive equations yield

nce .
P=(Apa+ Z ASZiI’i)ﬁ){, ' @)

i=1

or
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Figure 1. The axis of the stiffener

Stiffener

Skin
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Figure 12. In-plane force resultants for the skin and the stiffeners
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- P , (8)

ne
Apa+ Y Al

i=1

<~y

where the index i stands for the stiffened cell number, 1 is the width of the cell number i, a is the

panel width, e is the panel strain due to the compressive load /. and nc is the number of cells.

Now, only the shear load is taken into account. Using a methodology similar to comptession

loading analysis yields a shear strain

9)

s _ S
ny - ne B
Age a + Z Asei 1.

i=1

where S corresponds to the total shear load.

3.2.2 Load distribution

Using the principle of superposition, when both compressive and shear loading are applied to the

panel, the strains are given by

=0 6, = eb Yo = y”zv . (10)

and the stress resultant vector in the skin can now be obtained from the skin constitutive equations

Ny } = { A ¢ (11)
S
N;y Agﬁ Yxy

This stress resultant vector in the skin is uniform.
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The load carried by the i* cell is obtained from the stiffened cell constitutive equation and equation

(6) as
r
Fy Al b ey
r
{ P } { Ayai Liey } ~ (12
A o S )
chyi A(rr(n' Livey
- S
]'fc;i Afraﬁi h Yy

Using the same geometric transformations defined in Ref. S, the longitudinal load carried by the two

stiffeners in the i* cell is given by

- h - T h
L g Te 13
e 2 sin ¢; 2 cos o, o 2 sin o; 2cos;

3.3 Instability Analysis Of Geodesically Stiffened Panels

In this section, the buckling analysis of grid stiffened flat panels is established.

The two main modes of failure of a geodesically stiffened panel are a material strength failure and
buckling. In order to design an optimum wing rib, these two modes have to be studied. The ma-
terial failure analysis of the panel is done by the systematic application of a maximum strain crite-
rion to the skin and the stiffeners, for any panel configuration. The remaining mode is due to an
instability of the panel under external loads. Once the critical loading is reached the effect is

buckling failure of the panel.
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In this part, an analysis tool is developed to determine the critical loads of geodesically stiffened
panels. For this purpose the Rayleigh-Ritz method is coupled with the Lagrange multiplier tech-

nique to obtain a constrained system on which a stability analysis is performed.

3.3.1 The Rayleigh-Ritz method

The Rayleigh-Ritz method is based on energy methods and is widely used for the buckling, bending
and vibrations of beams and plates. This approximate solution method is useful in the case of

problems for which the differential equations are too complicated to solve.

3.3.1.1 The energy method

The total potential energy is defined as the sum of the strain energy stored in the body added to the

potential energy of the external forces (equal to minus their work)
M@, v,wy=U+1V (14)

where 1,v,w are the displacements in the x,,z directions and U and V are the strain energy and the

potential energy of the applied external forces, respectively.
A state of stable equilibrium of a body is then defined by the two following requircrnents:

1. The total potential energy has a stationary value or’
M(u, v, w) = U+ V = Stationary value . (15)
2. The total potential energy is minimum.
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3.3.1.2 The Rayleigh-Ritz method

In the Rayleigh-Ritz method, the additional displacements due to buckling (2,v,w) are expressed in
the form of a finite series. For example, in the case of a plate problem the three additional dis-

placements can be expressed as

i
Mk
=

A mk Um k(x ~.l")

3
It
It

i
D=
Mo

BogVpglx) (16)

e}
1
<
il

W= Cr Wi

D=
D

‘
il
Y
il

where U, V,; W, are called shape functions and A, B,., C,, are the undetermined coefficients.

P

The shape functions should be chosen carefully, the general guideline for their selection is the fol-

lowing :

1. Fach one of the shape functions must satisfy the essential boundary conditions.
2. In order to simplify the analysis, they should be chosen, if possible, to be in the separation of

variables form:
F(x] , JC2,. ey .X_'N') = FI (xl ) ["2(x2) [;.LV’('YN) ( 17)

1 To reduce the number of terms in the series, and hence reduce the order of the system to be
solved, the shape functions should also be chosen to correspond as closely to the actual de-
formed shape of the body as possible. Tor example, in the case of free oscillations of a spring,
a well known function (sin w!) is a perfect shape function, performing much better than

would a polynomial function of time.
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Substituting Eq.(16) for the buckling displacements into the second variation of IT (i.e., 82IT), the

Trefftz criterion (8(6%z) = 0) is the variational statement for the buckling:

9511 ~0 m=12 ..M
CY k=1.2....K
2 =1,2,..,P
0}681’1 -0 /’_‘ ; (18)
ABg q=1,2,...0
_5521'[ —0 r=12..,R
3C,, s=1.2,...8

This set of linear simultaneous equations represents the stability condition for the problem.

3.3.2 The Lagrange multiplier technique

This method represents a powerful tool for the minimization of a functional subject to constraints

on its variables.
Let 7 be the functional to minimize
T = TT(.X‘,X:Z“...X‘N) ) (19)

subject to the following J constraints:

C‘ (x1 \ X‘fz. ey ,\"‘gv) =1
Cylxy X3, v xy) = 0
' (20)

Cy(x) Xg o xy) =0

The following function L, called the Lagrangian, is built
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L(x, y) = (%) + 7, Cy (%) + y,Cy(x) + - +v,CAx)
J
— T + ). 7 G) ' 2
j=1

where x and y; are; respectively, the vector of the variables x, xz, ... , xy and the Lagrange multi-

pliers. Note that there is exactly one [ agrange multiplier per constraint.

Stationarity of the second variation of Tl subjected to the J constraints requires the N + J condi-

tions

A.(x,
XY g p=t2. N
i 22
3L(x.y) . @
AR 0 =12,
Wj
Recalling equation (21), this can also be written as
M) w0
20y =0  n=12..,N
dx, = dx, , (23)
Cix) =0 =12

which represents a set of (N +./) simultaneous equations in the (V +./) unknowns x and y.

3.3.3 Buckling of geodesically stiffened panels

In the present analysis, the Lagrange multiplier method is applied to the stability analysis of
geodesically stiffened panels. The functional that is used is the second variation of the total po-
tential energy of the panel, which is the sum of the total potential energies of the skin and stiffeners.

The total potential energies of the skin and stiffeners are derived in terms of independent shape
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functions. Likewise, constraints that enforce the continuity of the deformations of the skin and
stiffeners are written in those terms. Certain derivatives are then used to obtain the set of equations

that governs the entire system.

More specifically, the Lagrange multiplier method is nsed to ensure the compatibility of the out-
of-plane deformation of the skin, Wen, with the transverse in-plane deformation pattern of the
stiffeners, and the compatibility of the skin and stiffener rotations along the stiffener line of attach-
ment. This is achieved by imposing constraints at a finite number of points (collocation) along the
stiffener axes. Then, the second variation of the total potential energy is made stationary subject to

the all the constraints simultaneously.
There are five main parts in this section:

1. Derivation of the second variation of the total potential energy of the skin.

2. Derivation of the second variation of the total potential energy of the stiffeners.
3. Constraint 1 : flexural contribution of the stiffeners.

4. Constraint 2 : continuity of skin and stiffener rotations.

5. Connections and final eigenvalue system.

3.3.3.1 Skin total potential energy

In order to explain all the future choices, recall here the main assumptions that were made about
the skin. The skin laminate was chosen to be symmetric about the midplane (B; = (), balanced
(A1s = Ay = 0), and specially orthotropic (D= D = 0). The anisotropic coupling effects are neg-

fected’ and the panel is subjected to uniform in-plane forces only.

Whitney” gives a complete derivation of the strain energy of a laminated plate. Since the skin is

balanced, symmetric and specially orthotropic, this energy can be simplified by discarding the terms
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which are multipliers of A4is,.42,By, Dis,D2s. Moreover, since the strain energy is uncoupled, the
strain energy due to in-plane displacements is considered as an arbitrary constant’. The second

variation of the strain energy is

a pb
§U = -12— 'L J‘O [D11 (W + 2D 12 (Wocd(0,) + Dpafwiyy) + ADgew ) [ dxdy (29

where (see Figure 14) a is the skin width in the x direction, b is the height in the p direction, Dy

are the bending stiffnesses, and w is the skin out-of-plane deflection due to buckling.

The second variation of the potential energy of the external in-plane forces is given by

a pb
8V = — % .L 'L [N + 2N (w. )W) + Nyw) ]dxdy (25)

where N,, N,,, N, are the applied loads in prebuckling equilibrium.

The second variation of the total potential energy of the skin is defined as

St = U + 87V (26)

The shape function for the out-of-plane deflection must be chosen to satisfy all the kinematic

boundary conditions, which are those of a simply supported plate:

w=0at x=0.a

w=0at p=0b N
The following shape function seems to be adequate for such a problem.
Mo nmy l<x<a
.omrx <x<
w(x,p) = Z Z App sin —g— SN —= D<y<bh (28)

m=Iln=1|
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Moreover, the chosen shape function satisfies the mechanical boundary conditions as well:

M= — (D W, ex + Digwiy)) =0 at x = 0,a
29
My = — (D) qW,xx + DyaWoyy) = 0atyp=005 *

Using this shape function and introducing a common multiplicative factor 1 extracted from the

applied load (proportional loading) defined by—

(30)

z =
g
oo
> o

<
i
Shb

the following expression for the second variation of the total potential energy of the skin can be

obtained (Phillips and Gurdal®):

52 g = 0 U + 87V

M N
(52U= Z zAmn2Pmn (31)

m=tin=1

M N M N M N
8V =— 1{ SN AR YD, 3> Am,,qus"’”Pq}

where

- ] 1t a 12 66 ab 22 b
2 2
mn mab | m n
R™ =% {NX(T) +Ny(‘b‘>}
—— dmnpq
§mnPa NX}’ ([)2 m2)(n2 42) ) (4 p) and (n+ q) odd
0, otherwise

37
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3.3.3.2 Stiffener potential energy

Instead of considering the stiffeners as beams as was done in the previous study?, they are considered
here to be plates. In the previous study deformation of the stiffeners in their out-of-plane direction
was not taken into account; only flexural deformation in the out-of-plane direction to the skin was
included. Since the previously obtained optirﬁu?n designs are composed of stiffeners with heights

15 to 20 times larger than their thicknesses (see Ref.5), the beam assumption may not be valid.

Let » be the longitudinal axis of the stiffener, { its transverse axis, y its out-of-plane axis, and
uv,w their corresponding displacements. Assuming that cross-sectional planes remain plane and

normal to the stiffener axis as the stiffener bends in its own plane® ,

(1)
u("v C) = ”0(’7) - C g’? . (32)
Moreover, for small displacements it is assumed that
v(n, §) =vo(n) (33)

where 1, v, are the displacements at { = y =10, i.e., the base of the stiffener.

Complete derivation of the strain energy of a general laminated plate, starting with the Kirchhoff
displacement-strain relations, is given by Whitney’ . In the case of a symmetric, balanced and spe-

cially orthotropic plate, the second variation of the strain energy is given by
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2
Ay(u,)” + 24,51, +

' L p—= H+ =
2,1 2 2
au_zfo {f +[ dc}dn

Azz(v,g)z + A66(uv( + V,n)2
, (34)
2

1 L —T‘ "+
+———]~ j +[ dt > dn
2.0 T4 J 7

where L, H, 7, are the length and the height of the stiffener, and the thickness of the skin, respec-
tively (Figure 14), and uv,w are the additional displacements due to buckling.

Substituting Fqs. (32) and (33) into Eq. (34) the second variation of the strain energy reduces to

2 Lt ¥ e 2,202
U=~ .[0 J . Ls (411 (g + Ly = 2 o Vo) ] &6 -
e T
., | P )+ 2P0 )W) + . (35)

I( p—= H+ =
+~1—f {]' 2 +f 2 dc}dr,
20y |y
2

- 2 Doo(W,p)? + ADgs(W,, )
22V (L 667\l

The term —2{ i,y Voo in Eq.(35) is odd with respect to ¢ and, therefore, vanishes during the inte-
gration. Moreover, the term Anuw,.? is independent of ¢ or y coordinates, and can be considered an
arbitrary constant during out-of-plane or in-plane bending. Thus, the final form of the second var-

iation of the strain energy of the stiffeners reduces to

2 s ”+125_ 2.2
S R I B A
2 2

75 7, Dl I(W’rm)2 + 2D|2(”"vym)(wvgg) + s (36)

L( == H+ =
A <
2Jg |- I I
: .

Dy(w ) + ADgg (W)
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Figure 14. The dimensions. Definitions.
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At this point, two kinds of terms appear in Eq. (36) : some of the terms are related to the in-plane
bending, and others are due to the out-of-plane bending of the stiffeners. Small displacement theory

permits us to write the total strain energy of the stiffeners as the sum of the two contributions.

In the case of a stiffener made of unidirectional material oriented along the longitudinal axis, it is

possible to rewrite the second variation of the in-plane energy term as

—f-= 7

Lt - H+ = - Bl
7.[0 f *J (4118 Vo Jl "’4:7.[0 (v ln (37)

with

where t,, 7, are the skin and stiffener thicknesses, and [, and F; are the moment of inertia and the
longitudinal elastic modulus of the stiffener, respectively. The in-plane part of the energy expression

is the same as the one used in Ref. 5.

Potential energy of the uniform axial loading N applied along short edges of the stiffener is derived
next. N is defined as the ratio of the load carried by the stiffener (given by Eq. (13)) over the stiffener
height (2H). The expression of the additional end shortening s({) due to the buckling displacements

v,w is given by®

1"6w2 1"r3v02
.r(C)=—7'[O (W) d’l—7.[n< P ) dn (38)

where w = w(n, {), v, = v,(n) are the additional displacements due to buckling. Therefore, the second

variation of the potential energy of the applied load is
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(39)

We now define the shape functions for the stiffener additional in-plane and out-of-plane defor-
mations due to buckling, v,(») and w(y, {), respectively. Note that the stiffener in-plane deformation
v,(n) is to be connected to the out-of-plane deformation of the skin, which is described by a double

Fourier series:

M N
. . nmy N<x<a
w(x,p) = Z Z Apn SN m;rx sin -— = 0<y<bh (40)

m=1tn=1

We also assume a simple Fourier series to describe v,() of the stiffener

K
k
vl = D, B sin —% O<n<l | (41)
k=1

where B, are the undetermined coefficients. This shape function satisfies the geometric boundary

conditions at the ends of the stiffeners:

v =0 at =10

=0 at n (42)

il

<
{

The shape function for the stiffener out-of-plane deformation pattern is more complicated. The
stiffeners are attached to the skin along their longitudinal axis, and their out-of-plane deformation
corresponds to the in-plane-deformation of the skin. In this study, the contribution of the in-plane

deformations of the skin is ignored. Therefore, it is assumed that w = 0 at { = 0 for all 5. The other
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long edge of the stiffeners is free, and the two short edges are assumed to be simply supported. The

following shape function satisfies these boundary conditions:

N<n<lL

L K

.o kmn

w(mé>=[Z /Z Cuisin == - Zcr<te S *3)
=1lk=1

where C, are the undetermined coefficients. For a panel that has 1 number of stiffeners, the shape
functions have to be re-indexed to indicate the stiffener number, v.i(n) and w,(n, ), where the un-
determined shape coefficients for the displacements v.,(i7) and wi(n, €) are By and Ci, tespectively.
The length of the i* stiffener is [, where /= {,...I. The expression for the second variation of the

total potential energy of the stiffeners is the sum of the total energies of all the stiffeners:

I
2 2
é Torid = z 4 Tstiffener i (44)
i=1

The derivation of each 62 gme is done by placing the shape functions into the equations (36),
(39), and (44). This leads to

2 i i i i i {
6 W stiffeneri = Uﬂexural + Ubendingll + I'lbnndz'nglz + l’rhﬂnding22 + Ubending66 + Vloadingv (45)

with
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i "AEIII X 4 52
Uﬂexural= Z k™ Bi

3
4L; o=
4 L L K
Ul __Dn" ConC K L it qltp+1 o
bending1l = 3 ek T Tl [T+ H) - I i
: 2Ly Thp=ik=1 P
L L K
i Dlz"2 - 1 . [+p—1 ol p -
Ubendingta = — 1, Z Z Z (’ilk(/iplzkzp(p‘])‘/‘:p—j[(7s+11)+p - 1,7 1]’1‘7}
[=tp=1k=!

L K’
i Dy, Ly N 1 . - . -
Ubending2s = —— Z Z Z {(,”k(ipklp(l— D — 1)7—;;—_7[(75+/,)1+p 3 pitr 3]%}

L
: 2Dy4n’
U ;)ending66 = L. Z
=

-
I
S

=1
K’ k2
v { -1 d -1
z {('t'lk('ip/{ lp I+p- 1 [(Ts+ ) 7 - 7.v+p ]’71[)}
1

l=1lp=1lk=
j N N & K ! 1 l S
. : +p+t 2,2
Vioading = “'—2—}:‘ Z Z Z CurCipte Tray T [T+ F7+Y - 7 P e+ H Z Biyk
IZip=tik=11 k=1
where

(46)

and [+ p > 4 in the summation for Usemdig2-

3.3.3.3 Second variation of the total energy of the panel

The total energy of the panel is the sum of the total potential energies of the skin and the stiffeners.

The second variation of the panel total energy is given as follows:

2 2 2
4 T panel = O i + 4 Tarid

/ ) / 47
= skin + l.vl«'in + ('grid + Vgrid

Analysis Development 44



Substituting the expressions of second variation of the energies, derived in Egs. (31) and (45), into

Eq. (47) gives

2
o T panel = Uskin + Vikin + Ugrid + Vgrid

M N
Uspin = Z Z Am”2[,mn
m=1n=1|
M N
Vskin —- 4 z Z 4mn2Rmn+ Z Z z ZAmnA qunpq
m=tn=1\ m=tn=1p=1tg=1 , (48)
LK
rzd Z Z Z Z (Il/((lpk( l"(p + Z Z szQlk
i=l{=1p=1lk=1 i=1k=1
I L . K
gnd - Z Z z Z llk(‘zpkl/l"(p + Z Z sz’]lk
i=li=1p=1k= i=thk=1
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where the different coefficients are given by the following expressions,

4 : 2 4
pmn n;b [p”(%)uz(/),ﬁzn%)(%”i) +n22(—g-) ]

4
w_ ™ Eils 4
. 3
4L;
2 2 2
mn _ m-ab | sr(om =r{ n
R = 2 [NX (Z) +W, (—b—)]
N (m + ) and (n + 4) 0dd
' m+pyand{n+4g)o
Smnpq= xy (p2_m2)(n2_q2)
0, otherwise
2,2
ik __m k°H
m="2r Ni
Uz’lkp Utlkp + Ut[kp + l,zlkp + Uzlkp
D,z
Uz[kp 11 I i+p+1 T{+p+1 p
2L} z+,+1 L5+ 1D Sl
D x _ _
Uzlkp T 2= 1) 1 [(7~X+II)[+p 1 T§+p 1]"7
L,- [+p—1
Dy, L; _ _
yilke — 222 ‘ lp(l—l)(p—l)——————[+ [T+ 7= = TP
2Dggn” 2
ilkp _ 66 k - I+p—-1 _ ql+p—1
Uge —I, lp——————H_p_l [(Ts+ 1D T JE
; N;n k2
itkp _ Vi [+p+1 _ gl+p+1
yrr = AT Trp [(T + 1) T, 1
(1 + (-1)’*")
L= 2

and [+ p > 4 in the summation for the term [/#7. The 1 is the load factor defined as
N =N N =N NG = NG N=AN; (49)

y

Note that the only unknowns in Eqgs. (48) are the Fourier coefficients, all other coefficients are
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specified in terms of the material properties, geometry, and load coefficients.

3.3.3.4 First constraint : continuity of skin and stiffener hending displacements

This constraint enforces the condition that the out-of-plane deformation of the skin w., has to be
equal to the in-plane transverse deflection of the stiffeners v.. The constraint is enforced at a finite

number of points located on the stiffener axes {Figure 195).
Let x,p,z be the axes of the skin and n.{,x the axes of a stiffener :

x, are the longitudinal axes of the skin and the stiffener
v,¢ are the transverse axes of the skin and the stiffener

z,x are the out-of-plane axes of the skin and the stiffener.

On each of the I stiffeners, there are J constraint points, located at the coordinates (n, 0, 0) for the

stiffeners and (x;;, p;,0) for the skin. Using the shape functions, this constraint can be expressed as

YL . mn . nm £ . kn i=1,2,..,1

m=1in=1 k=1

This constraint is exactly the same as the one used in the previous work®.

3.3.3.5 Second constraint : Continuity of the skin and stiffener rotations

This constraint is included to ensure the continuity of rotation between the skin and the stiffeners
at the base of the stiffeners (along the » axis (Figure 16)). Tt ensures that right angles between the

stiffeners and the skin are maintained.
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stiffener

P,

Figure 16. Second constraint. Rotation of the skin and stiffener at the constraint points
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The effect of the out-of-plane bending stiffnesses of the stiffeners on the panel buckling load is
rendered by the application of this constraint. The terminology “rotational contribution” will be

used to describe this effect.

. is defined as the angle between the stiffener i and the x axis of the skin. The slope of the de-

flection of the skin in the direction of the y axis is obtained by using the chain rule differentiation

o _mx o, W8 51
Ix Ay 0 Ay Ay 1)
where
Ox .
—(&—:sm(f),
ay
(—7;_—msd>t

Using the shape function for wy., in Fq. (29), the slope of the skin deflection with respect to a

stiffener axis x; is given by

aw n
—kin, Z Z Amn[ sin ¢; mn 0s mnx sin m;y — cos (b, b sin m:lrx cos Zy ] . (52)

m=1ln=1

Using the first derivative of the shape function associated with the out-of-plane deformation of the

stiffeners, with respect to the { axis (evaluated at { = 0), the constraint can be expressed as

ow i Ytlff{
= () by =0 (53)

or as
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M N
P 4 A ¢ mn mﬂx‘-}- . mry,, nmro . mﬂxij ﬂﬂy[j
= mn| SN @ —g— €COS —5— Sin —— = cOS ¢; =5, sin—3 cos —

m=1ln=1

. (54

Kl
+ Z C“ksin—/ﬂt-nij=0
k=1 L

3.3.3.6 Final System of Equations

The Lagrangian of the system is built as following:

1 J ! J
i=1j=1 i=1j=1

where u;, v; are the Lagrange multipliers associated with the constraints gy, Ai.
The solution of the problem is given by the sct of equations
3L -0 m=1,2,...M
3 A, n=1.2....N
aL i=1,2....1
By k=1.2,...K
i=1.2....1
56(,[}/1;{ ~0 k=12, K (56)
[=1,2,... L
—@4——0 i=12...1
g =12
aL _g i=12...1
vy j=120

which represent (MN + IK + [LK’ +2/.7) equations in (MN + 1K + [1.K’ +21J) unknowns. In ex-

pended form they are
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This is a generalized eigenvalue problem: the eigenvalue of the problem is 4 and the eigenvector is

composed of the undetermined Ay Bu, Cinr > vi-  The problem can be written in the following

matrix form:
(kg 0 ka wdl[a] [d 0 0 o @)
0] Kyl [01 [Kul 00 |[(B) (0] Myl (01 [0] [0]
01 [0] Kl (00 [Kesl||rcr|=2] (01 (03 [Myl (0] (O]
Kl K] [0 101 (00 | | 0] [0 - [0] [0] [0]
1 0 el 1 | [m] [0 o )

(4]
(B)
(©
{u}

| ]

(58)

In order to reduce the order, and hence the computer running time, a condensation is used. By

setting ./ = K, which sets the number of terms in the in-plane deflection series of the stiffener to be

equal to the number of constraint points, it is possible to invert [Ku] and [Ka), and eliminate

{ny} and {By} before calling the eigenvalue solver. Using the second and the fourth “lines” {u} and

{B} are written in terms of the other unknowns:

(1) = [KpaT ™ {AIM9J(BY = [K(BY)
(B} = — Tkl [Kai 2

The system is then reduced to the following one, which is much smaller than Eq.(58).

K1 [0] [Kisl| {0 M1 [0 [07] [{D
[0] [Kil [Kasl| [{CH]= 2] (07 [Ma] (03} {CD
[Ksi] [Ks3] [0F || v} (01 o3 03| v

where

[K']=[Ky 1]+ [Kial [KaaT " [Kp] [KanT™ TRt
(M'] = [M,,] + [Kia] [Kpa ] IMp] [KaoT ™ TKai]
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No other reduction of the system is possible, but a modification can be done. The eigenvalue solver
reduces the left hand side matrix to upper Hessenberg form and the right hand side matrix to upper
triangular form. To minimize the number of operations needed for this step, it may be helpful to

re-order the terms inside the matrices and the vectors:

[K'] [Kys] D07 || (4 M7 [01 [0] || (4
[Ks] [0 [Ks3df | fvy|=2] (01 (0] [OF { {v (62)
(0] [K3sl [K3d) [ C) 0] (01 [May]|[{)

The order of the system is given by

Order = MN + 1K + IK'L. . (63)

where

1. M x N is the number of terms used in the skin deflection serics

2. [ is the number of stiffeners

1 Kis both the number of constraint point per stiffencr or the number of terms used in the series
describing the in-plane deflection of the stiffener.

4. K'L is the number of terms used in the out-of-plane deflection series of the stiffeners.

For a panel composed of numerous cells, the order increases very rapidly to a point where the
precision of the computer used might be a problem. A typical example is a 5 cell cross stiffened
panel (I = 10), with K= 13, K" =6, L. = 6, M= 17.N =9. The order is 643, while the same prob-

lem without the constraints number 2 would have an order of only 153 (if M = 17,N =9).
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4.0 Verification and Examples

A new computerized design code was developed based on the analysis derived in Chapter 3. The
purpose of this chapter is to analyze some results of the new code in order to verify its accuracy,

and to compare the new analysis with the previous one’.

A shorthand coding defined in this section is useful later on. This coding gives a quick description

of a panel and its loading, and is defined as

Igeom C Neeit C [(‘ S .Y[ ., (64)

where /,,. stands for the type of stiffening geometry (2 for longitudinally,3 for diagonally and 4 for
cross stiffened panels), 7., stands for the number of cells, 10/ /bfJin is the average compression stress
resultant applied to the panel, and 10* Ibf]in is the average shear stress resultant applied to the panel.
For example, for an 8 cell cross-stiffened panel loaded by 1000 /bf]in in compression and 100 /bffin

in shear, the shorthand coding is 4C8C352.
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4.1 Partial Verification Of The New Analysis

In order to check the analysis, some of its parts are isolated and studied independently.

There are two parts in this section. First, the analysis corresponding to the buckling of the stiffeners
is compared with the analysis of Stoll’, which is already verified. Second, some new results are

compared to the results obtained in the previous study*®.

4.1.1 Stiffener buckling

In the set of equations (57), it is possible to isolate the equations corresponding to the buckling of
a single stiffener which is simply supported on its short edges and longitudinal axis while free on its

long edges.

[=1,2,..,L

k=12 ...,K
L L (65)
Z CiptcUitiep = 4 Z CipeVitkp

p=1 p=1

This set of equations corresponds to the buckling of the i stiffencr. All the participating terms were
previously defined. Using this set of equations, a Fortran code was written to compute the buckling
load of stiffeners with various dimensions. The results were compared with those obtained using the
code developed by Stoll* which includes shear effects. TFor stiffeners with small thickness compared
to their width (z, s—lsi) the computed buckling load was within 3% of the value computed in

Ref9. Thus, for thin stiffeners the present analysis is sufficient to calculutate the buckling load of

the stiffeners, and the transverse shear contribution does not need to be taken into account.
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The accuracy of the program with constraint on the rotation of the stiffener can also be checked.
By imposing a zero deflection of the skin everywhere, the constraint will set the rotation of the
stiffener to zero at the constraint points, which is close to clamped boundary conditions along the
stiffener longitudinal axis. The present analysis was then compared successfully to a buckling anal-
ysis for an isotropic stiffener for which one long edge is free, the other is clamped, and the two short

edges are simply supported.

4.1.2 Partial verification with the previous analysis

The stability equation of the panel as a whole (see Fq. (62)) is rewritten for convenience:

(K] [Kis] 01 |0 M7 01 [0 || {4
Ko [0] [Ks1|| ) |=2] 101 01 (01 |}
[0] [Kis] [Kasd| | () (0] [0} [M3l}| (O

In these two large matrices, there are two kinds of submatrices; one group could be called behav-
ioral matrices and the other one is the constraint matrices. For example, the submatrices
K'and M correspond to the stability of the panel including the flexural contribution of the
stiffeners. The submatrices K3 and M3 correspond to the out-of-plane stability of the stiffeners. The

submatrices Kis, Ksi, Ks3, and Kas correspond to the constraints on the rotation of the stiffeners. Note

that the two large matrices are not symmetric.

As can be seen, it is possible to choose the level of constraining by choosing the order of the system

to send to the eigenvalue solver. For example, starting from the top left of the matrices, an order

1. MN corresponds to the stability of the panel only taking into account the flexural contribution

of the stiffeners : exactly as in the previous study®.
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2. MN + IK + [K’'L corresponds to the stability of the panel taking into account the effect of

the out-of-plane bending stiffnesses of the stiffeners.

Therefore, this new analysis can be compared with the previous one in Ref. S by selecting an order
MN system for panéls with equally sized cells. The results of such runs were exactly the same as the

ones in the previous study.

4.2 Convergence Study

As it is for most studics in which Fourier series are involved, there is a real need to know exactly
the lowest number of terms that will give a good approximation of the solution. It should be re-
called that the Fourier series approach relies on infinite sums of terms, and that the precision in-
creases with the number of terms in the series. These terms are written in matrix form in the
computer code, and the more they are the larger is the order of the system and the time to solve it;

but the better is the precision of the result.

With the Lagrange multiplier technique, constraints are imposed at certain points along the length
of the stiffeners. This technique results in adding as many supplementary equations as the number
of constraint points. However, a large number of constraint points will increase the order of the
system. For this reason, the minimum number of constraint points that are needed to obtain a

reasonable solution should be determined.

If the number of constraint points corresponding to a continuous constraint is small, the system
will be under restrained, and in the case of buckling response, the system will buckle in a mode that

violates the constraint conditions of the actual system. This is important for the determination of
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the buckling load of such a system since the determined buckling load will be lower than the actual.

This leads to a conservative design.
In the case of the geodesically stiffened panel, there are 5 parameters that need to be studied:

M : number of terms for the skin deflection along the x axis.
N - number of terms for the skin deflection along the v axis.
K’ - number of terms for the stiffener deflection along the n axis
[ number of terms for the stiffener deflection along the { axis

K : number of constraint points per stiffener.

As it was previously mentioned, it s possible to isolate different levels of constraint in the global

matrix. For the sake of simplicity a name is given to each of these levels:

Level | : Include only the constraint corresponding to the flexural contribution of the stiffeners.
Level 2 : Include the constraints corresponding to both the flexural contribution of the

stiffeners and the continuity of rotation between the skin and the stiffeners.

The aim of the following convergence study is to show the influence of the different parameters on
the resulting critical load of the panel. This study is done for a panel under compression, knowing
that for a shear loading the effect of the parameters is similar. Nevertheless it can be noted that a
panel under shear loading requires more terms for the skin deflection. This makes sense since the
mode shapes are unsymmetrical. This study was done on a 4 cell cross stiffened panel, a level 2
of constraining was applied, and an optimal panel from the previous study was studied for the fol-
lowing reasons. When taking a panel with very strong stiffeners only the skin buckles. Then, the
number of terms in the out-of-plane deflection of the stiffeners will be meaningless since this de-
flection is zero. When taking a very thick skin and stiffeners with little bending stiffness, only the

stiffeners are going to buckle. Then M and N would not have any effect on the buckling load. By
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taking an optimum panel from the previous analysis (.MM 1), both skin and stiffeners have a de-

flection for the buckling mode. Then all the parameters are important.

It must be noted that the number of parameters needed depends on the panel geometry and the
number of cells. For example a 1 cell panel requires fewer terms for the skin deflection than a
multiple cell panel. For each case, before any optimization, a convergence study is done on the

baseline design, to determine the parameters needed.

4.2.1 Influence of K

This parameter controls the number of constraint points along the stiffener axes. At these constraint
points, both constraints | and 2 are imposed. The influence of the value of K on the panel buckling
load is demonstrated in Figurc 17. As it can be expected, the smaller the number of constraint
points (i.e., K small), the lower the buckling load. For example, it can be seen from the figure that
10 constraint points are enough to obtain a stable solution. From design to design, the minimum

value for K does not change and usually it is set to 12 for the analysis of any panel.

4.2.2 Influence of M and N

The numbers M and N correspond to the number of terms in the skin deflection series, and setting
them to small values artificially reduces the freedom of the skin, thereby stiffening it. By setting
M to a large value and varying N the effect of N can be isolated, and vice versa. The standard
parameters are M =20, N=9, K= 13, K’ =6, L. =6, when one is varying the others remain
constant. The effect of the number of terms in the assumed displacement on the buckling load of

panels is shown in Figures 18 and 19. In either increasing M or N, the buckling load reaches a stable
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Figure 17. Influence of K on the panel buckling load
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value after approximately 10 terms. If too few terms in the series are used, then the predicted
buckling loads are high and lead to nonconservative designs. Tor the case of a small number of
terms in the series the solution of the eigenvalue problem seems to be unstable, producing arti-

ficially high values for the eigenvalues.

The eigenvalue solver normilizes the eigenvectors such that their largest component is 1. For all
the unstable cases, the 1" and all the large valu\es are in the subvector corresponding to the second
constraint (i.e., {v}). The other components (deflection series terms) ére relatively very small (at
feast 1010 times less). Moreover, some complex cigenvalues are returned by the eigenvalue solver.
It seems that for these cases, the computer is not precise enough to mix high and very low order
terms. Increasing the parameters over M =20 and N =9 leads to a étable buckling load. The

subvectors are now of comparable magnitudes, the “1" is in the subvector corresponding to skin

deflection series (i.e., {4}), and all eigenvalues arc real.

By reducing the number of constraints (decreasing K). over-constrained cases can become stable
cases. For example, the case M= 17, N=9, K= 13 is not stable while M=17, N=9, K=111s

perfectly stable.

This problem seems to be ill-conditioning of the system in the eigenvalue solver when the number
of deflection terms is insufficient. Some submatrices contain large numbers (i.c., 10°) while some
others contain very small values (ie., 10 9. In the casc of a small number of deflection terms,
conditioning of the matrices may be possible. By multiplying the submatrices by some appropriate
constant, some over-constrained cases can become stable. In selecting the constant, the subvectors
of the eigenvector are artificially set to be of the same magnitude. For example, the case M=,
N =1, K= 13 can be stabilized by multiplying the second column of the [A] matrix of the system
by 108, This has the effect of reducing the magnitude of the subvector {v} while the other subvectors

have their magnitude increased to approximately the same magnitude as {v}.
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Figure 18. Influence of M on the panel buckling load.
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A practical method of setting M and N is the following. M (N) should be at least twice the number
of inter-stiffener sections crossed by a line parallel to the X (Y) axis. Then M and N should be in-
creased until a stable eigenvalue is reached. For example, a 4 cell cross-stiffened panel has 9 (3)
inter-stiffener sections for the X (Y) axis. Therefore, M (N) should equal 18 (6), but a slight increase

to 20 (9) is needed to obtain a stable eigenvalue.

4.2.3 Influence of K’ and L

These parameters represent the number of terms in the out-of-plane deflection of the stiffeners. As
it was for the terms M and N, the larger they are, the more accurate is the solution. However, their
minimum value for an acceptable <olution is sought. K’ and [. represent, respectively, the number
of terms along the n and ¢ axis of the stiffener. The effects of increasing K’ and L on the panel
buckling load is shown in Figures 20 and 21, respectively. As can be observed from Figure 20 and
Figure 21, K’ =6,L=1isa sufficient pair to describe with accuracy the out-of-plane deflection

of the stiffeners. L = | means that the deflection of the stiffener is linear with ¢ (see Eq. (43)).

4.2.4 Conditioning of such a problem

The problem of ill-conditioning of eigenvalue problems and generalized eigenvalue systems is often
difficult to solve, particularly in the case of large systems. Ill-conditioning occurs when a small
variation of one of the terms in the matrix induces a large variation in the cigenvalues and

gigenvectors.

As an example, let us consider the following matrix:
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P (66)

For this example, let us sct the order to 40. 1f &= 0 all the eigenvalues are zero
(Ai=0, i=1,..n. Now, if » = 10 *, the eigenvalues become A, = 10" . i=1,..,n. During
the computations of the eigenvalue solver, mistakes on the order of ¢ are currently made. In our
example, there is a significant chance that the cigenvalue solver will replace = = 10-% by 0, which

would lead to erroneous results.

Noting the way the constraints are written, it can be observed that the coefficients corresponding
to the Lagrange multipliers are very small when the others are quite large. In fact, some of the
submatrices Ks, Ks3, and Kis are blocks of very small numbers compared to K*. This can have an

effect similar to the effect of ¢ in the previous example.

Solving such a system can result in a solution for which the subvectors are very different in mag-
nitude. As it is well known, computers can hardly handle computations involving both very small
and very large numbers. To avoid this kind of a problem, it is possible to normalize the constraints
by multiplying some of the submatrices by a selected constant and thercby obtain an homogeneous

eigenvector.

A method that was successful in solving the conditioning problem is explained here. In this method,
the system as represented by equation (62) is considered. To simplify, the notation cond{A} is used

to represent the largest number in the A matrix. The method is as follows;
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1. The second “line” is multiplied by cond{K'}/cond{Ks}

2. The secon& “column” is multiplied by cond{K"}/cond{Kss}

3. The [B] matrix is multiplied by cond{A4}/cond{B}

4. The obtained eigenvalue is multiplied by cond{A}/cond{B} to obtain the eigenvalue of the or-

igindl problem.

1]

The obtained eigenvector does not need to be modified.

The fifth operation is justified by the following operation:

Al =20~ D = (5 ) DA 67)

The eigenvalue solver used is the Tortran IMSI. subroutine (DGVIE.RG 1990)".

4.3 Panel Buckling Response

In the present work a constraint ensuring the continuity of rotations between the skin and the
stiffeners is used to improve the analysis and the prediction of the buckling load of the panels. This
constraint also has an effect on the buckling mode shape of the panel. The aim of this section is to
determine the effect of the new constraint on the buckling mode shapes and critical buckling loads

of geodesically stiffened composite panels.

However, it should be recalled that the analysis was developed in the restricted field of small dis-
placement theory. No post-buckling analysis was done and the modes are only of a qualitative in-

terest.

As mentioned, the goal in adding the second constraint to the analysis was to improve the predic-

tion of the solution. In order to determine if there is any improvement, we compare the new
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buckling mode shape and critical load to those obtained by the previous method (LMM1) and to

some results obtained with the Finite Flement Method (FEM).

4.3.1 The panel buckling modes

4.3.1.1 Types of response

The following brief study is used to show the different types of response of a panel under shear or
compression. A one cell cross stiffened configuration was studied. For both compression loading
and shear loading, four cases were included. From one case to another only the skin thickness was
varied. It should be noted that for each type of loading (compression or shear) the panels do not

have the same buckling load.

Interaction between the stiffener deflection and the skin deflection is shown in Figures 22 through
29. On each figure the contour lines of the skin and stiffener buckling modes are drawn and a 3-D
view of these modes is also presented. Figures 22 through 24 show the buckling mode of panels
under compression loading having, respectively, a thin, medium and thick skin. Only the panel with
thick skin does not participate in local inter-stiffener buckling; but in all cases the stiffeners buckle
in a two half wave type mode. However, only in the case of the thin skin (see Figure 22) is this
mode truly a two half wave mode. In the other two cases the mode shape of the stiffeners is dis-
torted due to skin mode interaction. In the case of Figure 22 the skin does not present any de-
flection along the stiffener axis. [or the other two cases (see Figures 23 and 24) the buckling modes
of the stiffeners are more complicated, and the skin presents a deflection along the stiffener axis.
Figure 25 shows the buckling mode for a panel having a very thick skin under compression loading.
In this case the applied load is not large enough to buckle the skin. Tlowever, the load caried by the
stiffeners is large enough to buckle them. It can be noted that the stiffeners buckle as if they were

clamped onto the skin.
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Figure 22. Mode Shapes for 4C1CxS0S (H= 3.614; ,=0.113;7,= 0.08)
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Figure 23. Mode Shapes for 4C1CxSOM (H=13.614; 7. = 0.113;7,=0.256)
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‘Figure 27. Mode Shapes for 4C1C0SxM (H =1.205; 1,=0.133;7,=0.177)
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Figure 29. Mode Shapes for 4C1COSxK (H =1.205; 7. = 0.133;7,=2.4)
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The buckling mode of panels under shear loading with increasing skin thickness is shown in Figures
26 through 28. All of them present local inter-stiffener buckling. For these three geometries the
only stiffener under compression loading is stiffener 1. Stiffener 2 is under tensile loading but still
presents nonzero deflection, this is due to the interaction between the skin and the stiffeners. Figure
29 shows the bucking mode of a panel having a very thick skin under shear loading. The load is
too small to result in skin buckling but the load caried by stiffener | (compression load) buckles it.
Stiffener 2, under tensile loading, does not participate in any deflection. For both thick skin panels
(Figures 25 and 29) the stiffencrs buckle in a six half wave mode. This is due to the length/height
ratio of the stiffener. This would be the natural buckling mode of a clamped stiffener. When the
skin buckles, the stiffener has more complicated deflections that clearly show the importance of the

effect of the skin on the stiffener buckled mode.

4.3.1.2 Rotation of the skin along the stiffeners

It is important to know if the stiffeners, via their rotational effect, can significantly affect the mode
shape of the skin. In order to answer this question, different configurations of panels were studied
with the old method (LMM1) and the improved one (1 MM?2). When plotting the contours of the
skin, no significant difference was found. When the plots of the rotation of the skin along the lon-
gitudinal axis of the stiffeners (where the rotational effect should be maximum) obtained by LMMI1
and LMM2 were compared only some slight differences were detected. In order to illustrate this,
the same 4C1CxS0 and 4C1C0Sx configurations shown in the previous section are considered in
Figure 30 through Figure 15. The two thin lines represent the variation along the stiffener axis
of the slope of the skin with respect to a direction perpendicular to the stiffener, as computed using
LMMI. That is only including the constraint on the bending displacement of the stiffeners. The two
thick lines show the slope of the skin along the stiffener axis # as computed using L MM2, including
both the constraint on the bending displacement of the stiffeners and the constraint enforcing the

continuity of rotation between the skin and the stiffeners. Dashed lines are used for the second
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Figure 30. Skin Slope along the stiffeners for 4C1CxS0S (H =3.614; t,=0.113;7,=0.08)
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stiffener. As it appears on Figures 30 through 32, which corresponds to compression loading, only
the thin skin buckles in a truly two half wave mode along the stiffener attachment line. For thicker
skins, the mode is more complicated. Another interesting effect is shown in Figure 33 (thin skin,
shear loading), where the slope of the skin along the stiffener, as calculated with LMM2, is anti-

symmetric. However, for all cases, no major change in the skin buckling mode appears.

4.3.1.3 Comparison of the Buckling Mode Shapes with LMMI1 and FEM

In the previous work’, LMM| was compared with the FEM (with the program CSM Testbed!)
on a 3 cell cross stiffened panel (4C3CxS0). The test panel was 80 inches long by 28 inches high
and had three cross-stiffened cells. The skin was 0.2 inches thick and its stacking sequence was
[ —45/45/90/0]s. The stiffeners were made of unidirectional fibers and their thickness was 0.2 in.

Four different stiffener heights of 0.5, 0.75, 1.0 and 1.25 were considered.

The new analysis was applied to the same test panels and their buckling mode shapes were drawn.
The mode shapes obtained by the two methods (i.c.. I.MM1 and 1.MM2) are compared in
Figure 36. The contours obtained with the FEM are shown in Figure 37 and compared with the
present results. It appears that adding the second constraint to the analysis was a sensible im-
provement, since the prediction of the buckling modes for the cases (A) and (B) is now closer to

the one obtained by the FEM.

4.3.2 The buckling load

Keeping the same panel configurations, the buckling loads obtained by the three methods are now

compared in Table 3.
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Table 3. Comparison of Buckling Loads for 3—cell cross-stiffened panels, between LMM1, LMM?2 and

FEM.
Panel Buckling I.oad (Ibf/in)

Stiffener Nismn | N
Height (in) Nrrum Nraemi N Nomn Nomr
0.5 573 342 471 0.596 0.823

0.75 705 613 649 0.870 0.921

1.0 748 708 727 0.946 0.972

1.25 783 743 770 0.949 0.983

As can be seen in the table (Table 3), the new method predicts buckling loads that are much closer
to the finite element results than those from .MM This improvement confirms that the effect
on the panel buckling load of the continuity of the rotations between the panel skin and the

stiffeners can be significant.

4.4 Second Constraint and Buckling Load

The purpose of this section is to study the influence of the second constraint on the panel buckling

load. Recall that the second constraint is used to ensure the continuity of the skin and stiffener ro-

tations at the base of the stiffener along its axis ».

In order to study the second constraint, the following method has been used. Using an initial design
and keeping the same cross-sectional area of the stiffencrs (/] x 7, = constant) and the same skin
thickness, the ratio H/r, is varied. The reason for keeping the same cross-sectional area for the
stiffeners is to keep the same load distribution in the pancl. It must be noted that a ratio Hz,
smaller than § is not acceptable since the Classical I amination Theory assumes the plate to be thin.
The critical loads obtained by using the two levels of constraint are compared. The examples of

studies on a 1 and 3 cell cross stiffened panel are shown in Figure 38 and Figure 39. These two
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figures show the panel buckling load obtained by using | MM2 normalized by the panel buckling

load obtained by LMM 1 as a function of the stiffener aspect ratio, for two different skin thicknesses.

From both figures, it appears that the second constraint has a greater effect on thin skins than on
thick skins regardless of the stiffener aspect ratio. Moreover, this effect decreases as the aspect ratio
increases. As can be seen, in the case of thick skins, the effect of the the second constraint can be
neglected for an aspect ratio larger than 20. ll(:wever, for small aspect ratios and/or thin skins this
constraint has to be taken into account. In addition, comparison of the results for 1 and 3 cell
panels presented in Figures 38 and 39, respectively, indicates that increasing the number of stiffeners
results in a larger rotational effect of low aspect ratio stiffeners for the thick skin. For an aspect ratio

H|z, = 5, the 4C4CxS0 panel (Figure 39), the rotational effect of the stiffeners corresponds to 20%

of the buckling load of the panel, for any skin thickness.

The analysis reveals that the second constraint is directly related to the out-of-plane bending
stiffnesses of the stiffeners. Thus, the thicker the stiffeners are, the more effective is the constraint
on the continuity of rotation between the skin and the stiffener. The stiffeners behave as an infi-
nitely large number of torsional springs placed on the skin. It is then obvious that these springs

will have a larger effect on a thin skin than on a thick one.

From the first remarks about the out-of-plane bending stiffnesses of the stiffeners (D), the concept
of stiffeners made of a sandwich material is implied. A stiffener made up of a light but thick core
and two skins would have the same in-plane properties (useful for its flexural contribution) and the
same weight (or not very different) than a stiffener including only the two skins (glued together)
but will have much higher out-of-plane bending stiffnesses. Taking again the example of the springs,
a stiffener made with a sandwich composite material would increase the stiffness of the torsional

springs.
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To summarize this discussion about the rotational effect of the stiffeners on the panel buckling load,
it can be concluded that this effect increases as the skin thickness and/or the stiffeners aspect ratio

H/z, decreases (keeping the same cross sectional area).
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5.0 Wing Rib Design

In this section a design study of wing ribs is conducted. The code written to check LMM2 is used

to study new panel configurations that arc likely to produce more efficient practical designs.

5.1 The Cell Distribution

As was mentioned, the parameters that control the the cell distribution can now be used as design
variables. The aim is to find out if there is a nonuniform cell distribution that yields panels with

higher buckling loads, or for a given load panels that arc lighter.

In the first section, the sensitivity of the panel to the cell distribution is studied. Then, some opti-
mum designs obtained by including the cell distribution in the design variables set are presented and

compared to previous results.
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5.1.1 Sensitivity to the cell distribution

As an example, a 3 cell cross stiffened panel under compression loading is considered. The width
X of the center cell (see Figure 40) is varied and the buckling load and the weight are studied.
When the code was used to find an optimum design using X as a design variable along with the skin
and stiffener thicknesses and the stiffener height, the calculated optimum cell distribution corre-
sponded to X,,, = 13.66. The effect of varying X from its optimal value on the panel buckling load

and the panel weight, both normalized by their optimum values, is shown in Figure 40.

If X is increased from the optimum value, the weight decreases but the buckling load also decreases
below the design load. [t can be noted that the reason for the weight decrease is that its minimum
is for 3 equally sized cells (i.e., X=26.67). If X is decreased, the buckling load increases and the
panel becomes safer with respect to buckling, but the objective function increases as well. This

shows that the computed optimum is correct.

Another remark can be made. Increasing or decreasing X by 20% will only affect the weight by
0.3% and the buckling load by 4"4. This has at least two implications. The first one is that some
manufacturing errors are permitted in this range. The second is that the optimizer might have dif-
ficulties finding the actual optimum cell distribution, since the gradients of the objective function

and constraint on the buckling load with respect to the cell width design variable will be small.

5.1.2 Optimization of the cell distribution

For the three geometries and three different loadings (compression, shear and combined), a group
of panels was optimized by using constraint level 1 and including the cell distribution parameters

in the set of design variables. It should be noted that since the second constraint is not active here,
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the buckling of_ the stiffeners has to be studied separately as it is done in Ref.5. In fact for these
design cases, LMM1 analysis is modified to include the cell width design variable. By comparing
the optimum designs obtained with the modified analysis with the optimum designs found with
LMMI1 (with equally sized cells), it appears that a certain weight reduction can be achieved for
panels having a small number of cells. However, when the the number of cells increases, the weight
reduction diminishes, and is insignificant for an 8 cell panel. Since optimum design panels are those

having a large number of cells for the three gcométrie& they also should have equally sized cells.

Some examples of the influence of cell distribution on the optimum weight for a cross stiffened
panel are shown in Table 4. Panels Nc =3, 4, and § are under an in-plane average compression
loading of N, = 1000 /bf]in. The eight cell panel is under a combined compression-shear average
loading of N, = N, = 1000 /bf]in. The weight reduction obtained by also including the cell distrib-
ution as a design variable is not significant and decreases as the number of cells increases.

Table 4. Variable Stiffening Arrangement For Optimum Cross Stiffened Panel under Compression

loading
NUMBER OF CELLS

Nec=3 Nc=4 Nc=3 Nc=8
Cross Stiffened Panel
D V(1) Skin Thickness (in) 0.215 0.199 0.171 0.125
DV(2) Stiffener Ieight (in) 1.19 1.003 0.978 0.679
DV(3) Stiffener Thickness (in) 0.127 0.092 0.096 0.122
DV(4) Cell #1 width (in) 3435 24.11 17.66 10.80
DV(5) Cell #2 width (in) 11.30 15.87 14.62 10.38
DV(6) Cell #3 width (in) - - 15.44 8.85
DV(7) Cell #4 width (in) - - - 9.96
G(2) Skin Buckling 0.88E-2 0.1E-2 0.57E-5 0.2E-3
G(3) Stiffener Buckling -0.24 -0.2E-2 -0.48E-2 | -0.97E-1
G(4) Strength of Material -0.93 -0.93 -0.93 -0.81
OBJ Panel Mass (Ibm) 31.61 28.32 25.22 20.43
Panel Mass reduction (%) -3.7 -2.8 -2.0 -1.0
D V(i) = Design Variables, G(i) = Constraints, OBJ = Objective Function
Constraints G(i) are feasible when negative, range: -1 <Gl <on

Skin laminate [-45/45/90/0]s. all plies equal thickness.
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5.2 Stiffener Rotational Effect | Optimum Design

In the pr¢vious studyS, it was shown that the trend for the optimum design of geodesically stiffened
panels is toward a large number of cells, a thinner skin. a lower aspect ratio of the stiffeners and a
lower ratio t,/t,. Moreover, it was shown in the present work that the rotational effect of the
stiffener is higher when the ratio r/z. is lower. Tor these reasons it seems that for the optimum
design of such panels, the second constraint should be incinded in the analysis. Nevertheless, for a
large number of cells (nc > ), the order of the system is large and, therefore, the computational time
required to solve it is large. For this reason, for the study of the rotational effect of the stiffeners,
only a small number of cells is considered. In fact, even with a small number of cells, a physical

understanding of the nature of the interaction mechanism between the skin and stiffeners is possible.

52.1 Rotational effect and number of cells

In order to study the rotational effect of the stiffeners when the number of cells is varied, the fol-
lowing study was performed. The optimum designs obtained with .LMM1 in the previous work
were considered. Their buckling loads were computed with T MM2 and compared with the ones
computed with LMMI. Tt appeared that the ratio Nyan/ N7 increases as the number of cells is
increased. However, for these panels, N;uu» never exceeded Njaan by more than 5%. An expla-
nation is based on the fact that for these panels the stiffeners were too thin to have a significant

bending effect; that is the ratio t,/t, was larger than 1.
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522 Lamination of the stiffener

As was previously mentioned, the rotational effect of the stiffener is directly related to its out-of-
plane bending stiffnesses. Until now the code could not handle stiffeners as plates. With the mod-
ifications introduced in this work, it is now possible to investigate the cffect of the laminate stacking
sequence of the stiffeners on the panel buckling load. In practice, it is possible to build panels in

which the stiffeners are laminated. if the additional effort to manufacture them is worthwhile.

In order to investigate the effect of stiffener stacking sequence on panel buckling, non-zero angle
plies are placed on the two faces of the stiffener laminates. Nine basic configurations of a 1 cell cross
stiffened panel were considered. For each of them the stiffeners were laminated in the sequence
[ —a/a[0/0]s, and « was varied. The 9 basic configurations were divided in 3 main groups. The first
group has a thick skin, the second one has a medium skin, and the third one has a thin skin. In
each group, the cross-sectional area was kept constant (to keep the same load distribution), but the

ratio t./tr, was varied.

Note that this analysis was derived for specially orthotropic stiffeners or stiffeners for which
anisotropic effects due to bend-twist coupling terms can be neglected. The present stiffener lami-
nated in the sequence [ —a//0[0]s presents non-7ero bending-twisting coupling terms Dis, Das.
Anisotropic effects exist but are negligible since these coupling terms are much smaller than the

other bending stiffnesses ;.

The panel buckling load, normalized by 1000 /bffin, as a function of «, the orientation of the
stiffener outer plies, is shown in Figures 41 through 43 for three aspect ratios of the stiffener

(Hfx, =5, 16 and 32).
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5.2.2.1 Thick skin

From Figure 41 it appears that the best stiffener laminate, for the case of thick skin, is
unidirectional fibers. In this case, the gain in out-of-plane bending stiffness for the stiffeners in not
sufficient in comparison to the loss in the in-plane extension stiffnesses to maintain the buckling
load at its initial level. Moreover, the higher the aspect ratio of the stiffencr is, the higher is its

buckling load, for any angle ~.

5.2.2.2 Thin skin

For thin skin panels, see Figure 42, the effect of the stiffencr aspect ratio is reversed; it appears that
as the aspect ratio of a stiffener is increased, the buckling load of the panel decreases. By reducing
the stiffener height but increasing its thickness, stiffener in-plane bending stiffnesses are reduced but
out-of-plane bending stiffnesses are increased. In this example, for the same stiffener cross sectional
area, higher buckling load panels are obtained when the stiffener aspect ratio is lower, or when the
stiffener out-of-plane bending stiffnesses are higher. Since the rotational effect of the stiffener is re-
lated to its out-of-plane bending stiffnesses it appears that for thin skins this effect is important.
Moreover, it is verified that the angle at which the buckling load is the largest (for any aspect ratio)

is a = 45°.

5.2.2.3 Intermediate case

The figure for the buckling load of intermediate thickness panels (Figure 43) shows two interesting
facts. First, for each aspect ratio, there is an angle o for which the buckling load is maximum. This

shows that for these cases both the flexural and rotational effects are important, and that by judi-
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ciously laminating the stiffeners it is possible to achieve gains in the buckling load of the panel for
the same panel weight. Tor example, with a = 34° the buckling load of the panel for which
H/x, = 16is increased by more than 5%. Secondly, the two curves on the top of the graph show
that a turning point between the two first cases (Thick and Thin Skins) is reached here; the buckling
load is not increased by doubling the aspect ratio of the stiffeners when H|r. = 16 but it remains

the same.

5.2.2.4 Practical aspect of laminated stiffeners

In the previous study, it was shown that the trend for the optimum design of geodesically stiffened
panels is toward a large number of cells. It can be noted in the optimum designs obtained by

Phillips that the ratio 7./t, decreases when the number of cells is increased.

From what was presented, some non-zero angle plies in the stiffeners can increase the panel
buckling load significantly when the stiffener thickness is large compared to the skin thickness. For
this reason, it might be interesting to include lamination of the stiffeners in the optimum design of

the panels. The analysis now permits it.

5.2.3 Sandwich stiffeners

Another way of increasing the rotational effect of the stiffeners is to use stiffeners made of sandwich
material. In order to give some motivation to futuré work, the following study is presented. The
4C8C3S3 optimum design obtained by Phillips® with I MM is considered. The stiffener thickness
is 7,= 0.12 in. The panel buckling load computed with LMMI is N, san = 1000 /bf]in and with
LMM2 is Noumz = 1049 Ibflin, for a combined compression/shear loading (N = N Compressiony
Now, the following sandwich stiffener is tried. The thickness of the core is 0.12in and its density

is 10 times less than the composite one; on each face of the core a skin of thickness 0.06 in is placed.
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This results in increasing the bending stiffnesses by a factor of 7 while keeping the same in-plane
extension stiffnesses, and only increasing the weight of the whole panel by 2%. The effect of the
new stiffeners on the panel buckling load is quite interesting; the buckling load is now

Niwgw, = 1123 Ibf]in, which is 7.1 % higher than Ny un and 12.3 % higher than Npaan.

5.2.4 Partial Conclusion

From this study it appears that the second constraint could be neglected during the optimization
of geodesically stiffened panels having unidirectional fiber stiffeners and low number of cells, since
their rotational effect on the panel buckling load is not significant. Tfowever, when the number of
cells is increased the rotational effect of the stiffeners is significant and should be taken into account
for any analysis. Moreover, the rotational effect of the stiffeners can be significantly increased by

using laminated stiffeners and even more by using sandwich stiffeners.

Thick sandwich laminates are prone to adverse transverse shear effects. Since the use of sandwich
stiffeners can significantly increase the buckling load of the panel due to their important rotational
effect, it may be necessary to modify the analysis to include the shear effect in the stiffeners and

further study the use of sandwich stiffeners for wing rib panels.

5.3 Horizontal stiffeners

By placing stiffeners at locations where the buckled skin deflection is large, it is possible to increase
the panel buckling load. Starting from the buckled mode shapes obtained in Ref. 5, it can be seen
that deflection maximums are aligned horizontally. For this reason it is surmised that horizontal

stiffeners should be a good way to obtain more highly stable panels. Because of the assumption that
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strain along the X axis of the panel is zero (i.e., 6. = 0), it is further assumed that these horizontal
stiffeners are not loaded in the prebuckling mode. In order to study panels with horizontal

stiffeners, the design code Pansys was modified.

5.3.1 Improvement of the panel buckling load

In order to show the effect of horizontal stiffeners on the panel buckling load the following exam-
ples are given. The two optimum 3 cell cross stiffened pancls for compression and shear loadings
of 1000 /bf]in obtained in Ref. 5 are considered. Tor both panels the critical load is computed
considering one, three, and seven additional horizontal stiffeners placed respectively at
(1/2), (1/4,1/2,3/4), (1/8.1/4,3/8,1/2,5/8,3/4,7/8) of the panel height. The critical loads for these

panels are indicated in the following table (Table 5).

Table 5. Critical load of two LMM1 optimum three cell cross-stiffened panels reinforced by horizontal

stiffeners.
Panel Buckling Load (1bf/in)
Horizontal stiffener ¢ . Sh
location (b) ompression Shear
{2 1520 1350
1/4,1. 7 Y4 1780 1790
l/8,l/4,3/8,1‘_.§/8,3/4,7/8 2040 2310

It appears that the panel critical load can be improved by a significant amount by adding horizontal

stiffeners.

532 Horizontal stiffeners and panel weight minimization

Since placing horizontal stiffeners permits a significant panel buckling load increase for some design

loads, it is possible to design lighter panels than the ones obtained before. Two three cell cross-
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stiffened panels reinforced by one and three additional horizontal stiffeners placed at
(1/2) and (1/4,1/2,3/4) of the panel height were optimized for the loadings 1000 /bf]in in com-
pression and shear. Their weight is compared with optimum three cell cross-stiffened panels for the
same loadings obtained in the previous study’. In Ref. S the weight corresponding to the optimum
panels was 32.81/bs for compression loading 1000 /bf]in, and 23.29/bs for shear loading 1000 /bf]in.

The weight reduction obtained by reinforcing with horizontal stiffeners is given in the following

table (Table 6).

Tahle 6. Weight reduction obtained for optimum 3 cell cross-stiffened panels including one or three
horizontal stiffeners.

Weight reduction (%)

Horizontal stiffener ¢ . <h
location (b) “ompression Shear
12 ~15% “12%
1/4,1/2,3/4 —19% —20%

5.3.3 Remarks

In order to increase the panel buckling load. horizontal stiffeners should be placed where the skin
deflection is likely to be the highest. As an example the buckled mode shapes of the same 3 cell
cross stiffened panel with horizontal stiffeners under compression loading are given in -- Figure id
TIOR I unknown --. Starting from configuration (A), a horizontal stiffener is placed at y = b2
where the deflection of the buckled skin is highest. Then the buckled skin shape is given by (B).
Two more stiffeners are then added at p = h/4 and p = 3b/4 and the buckled skin mode is shown

by (O).

For thin skin cross-stiffened panels with one horizontal stiffener at y = b/2, the buckling load should
be the same as the one obtained for a diagonally stiffened panel with the same number of cells and

thicknesses but with only half the height. This is true only for thin skin panels where the buckled
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skin deflection along the horizontal stiffener is zero and the stiffener almost corresponds to a simple

support edge. This was verified successfully for various numbers of cells.
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6.0 Concluding Remarks

The aim of the present work was to improve an energy method used for the prediction of the
buckling load of geodesically stiffened wing rib panels that are designed for use in large transport
type aircraft. An analysis developed previously for geodesically stiffened panels assumed the
stiffencrs to be beam like elements and was only taking into account the flexural contribution of the
stiffeners in a direction perpendicular to the skin via the | agrange Multiplier Technique. For cer-
tain panel geometries comparison of the buckling load obtained by this analysis with the one cal-
culated via Finite Elements showed significant discrepancy. The lack of stiffener out-of-plane
bending stiffnesses (out-of-plane with respect to a plate like stiffener), which was ignored in the
previous analysis, was thought to be responsible for this difference. One of the major goals of this
study was to improve the capabilities of the previous analysis and design code to account for the
out-of-plane bending stiffness of the stiffeners.  Modifications were also sought to extend the anal-

ysis capability to handle variable geodesic grid density.

The wing rib was modeled as a rectangular panel R0 inches wide by 28 inches high. The boundary
conditions were idealized to be such that the edges were simply supported and the in-plane exten-
sional deformation in the width direction was 7ero. The stiffencrs were considered to be symmet-
rically laminated and balanced plates. The grid of stiffeners was symmetrically located on both sides

of a balanced, symmetrically laminated skin.
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The Lagrange Multiplier Method (1, MM) was modified by including the energy terms associated
with the out-of-plane bending stiffness of the stiffeners. ‘The stiffeners are assumed to be plate ele-
ments attached to the skin by using constraints (in addition to the ones that ensure the equality of
the out-of-plane deflection of the skin to the stiffener deflection) in the LMM analysis. These ad-
ditional constraints ensured the continuity of rotations hetween the skin and the stiffeners along the
stiffener attachment line. The result is an analysis tool that permits the prediction of the buckling
load and mode shape of a geodesically stiffened panel with orthotropic plate-like stiffeners. For the
panel designs two constraints are considered, panel buckling (which includes the interactive skin
stiffener buckling) and material strength failure. This new analysis routine was combined with

ADS, a numerical optimizer package, in order to obtain a tool for designing wing ribs.

The results of the new 1. MM buckling analysis (I MM2) was compared with the results of a Finite
Flement Method. Results indicate that  MM2 generatcs a much better panel buckling prediction
than LMM1 for low aspect ratios of the stiffeners The effect of stiffener out-of-plane bending
stiffness was studied and it was shown that it should not be neglected in the case of thin skin and/or

low aspect ratio of the stiffeners.

The analysis tool was then used to investigate new possibilities for designing optimum wing ribs.
It was shown that a variable cell distribution can produce lighter designs than the uniform cell
panels for a low number of cells but is less and less efficient as the number of cells is increased. The
study of the effect of out-of-plane bending stiffness of the stiffeners lead to the concept of sandwich
laminated stiffeners that are likely to increase the buckling load of the panel. The code was modi-
fied to maximize the buckling load of the panel by using the ply orientations and thicknesses of
both the skin and the stiffeners as design variables. The pancl weight minimization, using the skin
ply thicknesses as design variables was shown to yield designs with significant weight reductions.
It was also shown that horizontal stiffeners can improve the buckling response significantly without

much weight penalty.
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